Теоретические основы динамики машин



             

Вязкое трение


   В этом случае возникает сопротивление движению, которое пропорционально его скорости. При этом сила сопротивления описывается выражением

  

,                                                      (14)

где k- коэффициент пропорциональности.

Примером системы, работающей в условиях вязкого трения, может служить гидравлический амортизатор (рис.15), который создаёт сопротивление движению поршня, зависящее не от перемещения (как это свойственно упругим связям), а от скорости и пропорционально её первой степени (14). Подобные устройства применяются, например, в конструкциях автомобильной подвески. Гидравлический амортизатор состоит из одного или нескольких цилиндров с поршнями или из камеры, в которой может вращаться крыльчатка. Цилиндры и камера наполнены амортизационной жидкостью. При движении поршней или крыльчатки эта жидкость продавливается через калиброванные отверстия; этим создаётся сопротивление, по характеру близкое к вязкому. В формуле (14) R- это сила, действующая на амортизатор, а вязкая реакция амортизатора на колеблющееся тело имеет противоположное направление.

Рис. 15

Дифференциальное уравнение движения в рассматриваемом случае таково:

  

,                                                (15)

или

,                                              (16)

где

;
.

Для рассматриваемого линейного дифференциального уравнения с постоянными коэффициентами характеристическое уравнение имеет вид

,

.

Обозначим

.

Тогда решение уравнения (16) определяется формулой

                                     (17)

или

,                                          (18)

где

;  
.

Следовательно, при наличии вязкого трения движение груза описывается непериодическим законом (рис. 16).

Тем не менее часто это движение называют периодическими затухающими колебаниями, несмотря на очевидную невозможность совмещения понятий "периодические" и "затухающие".

Рис. 16

Под периодом

 этих колебаний понимают время между двумя максимальными смещениями:

  

.                                            (19)




Содержание  Назад  Вперед