Теоретические основы динамики машин

         

Основное уравнение (уравнение Матье)


В ряде  случаев параметры механической системы - ее жесткость или масса - не остаются неизменными, а являются некоторыми заданными функциями  времени, чаще периодическими. Если нарушить состояние равновесия такой системы, то будут происходить своеобразные колебания: с одной стороны, их нельзя назвать свободными, так как система испытывает определенное внешнее воздействие в виде изменения жесткости, а с другой -  они не являются вынужденными, так как внешнее воздействие не проявляется в виде заданной возмущающей силы. Эти колебания называются параметрическими и в зависимости от свойств системы и характера изменения ее параметров могут иметь ограниченные или возрастающие амплитуды, причем во втором случае возможно наступление параметрического резонанса.

Рассмотрим простейшую систему (рис.56). Сосредоточенная масса 1 закреплена на конце невесомого стержня 2. Свобода перемещений стержня дополнительно ограничена втулкой 3, удаленной от нижнего конца стержня на расстояние

.

 

Рис. 56

Составим уравнение свободных колебаний груза, считая, что они происходят в плоскости чертежа. Если в текущий момент времени t перемещение груза составляет x, то восстанавливающая сила упругости стержня равна -cx, а уравнение движения груза имеет вид

где c - коэффициент жесткости системы.

Втулка 3 при ее достаточной длине обеспечивает практически полное защемление нижней части стержня, и тогда

. При этом предполагается, что стержень имеет постоянное поперечное сечение с осевым моментом инерции
. Таким образом, дифференциальное уравнение движения

                                            (148)

Если расстояние

 постоянно, то (148) описывает свободные колебания массы
 около ее среднего положения с собственной частотой

Теперь предположим, что втулка 3 скользит вдоль стержня 2 по заданному закону



т.е. совершает около среднего положения

 гармонические колебания с амплитудой А и круговой частотой
. В этом случае коэффициент жесткости оказывается функцией времени:

                           (149)


и дифференциальное уравнение (148) становится уравнением с переменными

коэффициентами:

                             (150)

что характерно для системы с параметрическим возбуждением колебаний.

Существует много других механических систем, подверженных параметрическому возбуждению. Ряд примеров убеждает, что в большинстве практически важных случаев дифференциальное уравнение параметрических колебаний можно привести к стандартной форме:

                              (151)

где a и q - некоторые постоянные.

Возвращаясь к механической системе, показанной на рис.56, положим, что амплитуда колебаний втулки A весьма мала по сравнению с длиной
, тогда вместо (149) приближенно получается

        (152)

и дифференциальное уравнение (150) принимает вид

                             (153)

Перейдем к безразмерному времени
:



тогда



и дифференциальное уравнение (153) приобретает стандартную форму (151),

причем

                                            (154)

Основное уравнение параметрических колебаний (151) называется уравнением Матье. Решения этого уравнения носят колебательный характер и главным образом зависят от конкретных значений параметров a и q. В одних случаях данной комбинации a и q соответствуют колебания, ограниченные по амплитуде, а в других - колебания с возрастающими амплитудами. Основную практическую важность представляет именно тенденция колебательного процесса: если амплитуды остаются ограниченными, то система устойчива; в противном случае имеет место параметрический резонанс, и система неустойчива.

Результаты решения уравнения Матье для двух различных комбинаций a и q показаны на рис.57 (эти решения получены при помощи электронного аналогового устройства). Хотя в обоих случаях параметр q системы одинаков (q = 0,1),  колебания имеют совершенно разный характер из-за различия между значениями параметра a (a = 1; a = 1,2). В первом случае амплитуды возрастают, т.е. система неустойчива, а во втором случае остаются ограниченными, т.е. система устойчива.



Для практических целей наибольшее значение имеют границы между областями устойчивых и неустойчивых решений. Этот вопрос хорошо исследован, причем окончательные результаты представляются в виде диаграммы, построенной в плоскости параметров a и q, которая называется диаграммой Айнса-Стретта.

Каждой данной системе, характеризуемой параметрами a и q, соответствует точка с координатами a, q на диаграмме Айнса-Стретта (изображающая точка). Если изображающая точка находится в пределах заштрихованных полей диаграммы, то система устойчива; неустойчивым системам соответствуют изображающие точки, расположенные на белых полях.





Рис. 57

На рис.58 показана часть диаграммы Айнса-Стретта, относящаяся к малым значениям параметра q. В качестве примера на диаграмме указаны точки 1 и 2, соответствующие параметрам a1 = 1;  q1 = 0,1; a2 = 1,2; q2 = 0,1 (решения уравнения Матье для этих случаев даны на рис.57).



Рис. 58

Точка 1 находится в белой зоне (неустойчивость), и колебания происходят с возрастающими амплитудами (рис.57,а). Точка 2 находится в пределах заштрихованной зоны; ей отвечает движение с ограниченной амплитудой (рис.57,б).

В плоскости параметров a, q области устойчивости чередуются с областями неустойчивости, причем наиболее широкая, а потому и наиболее важная область неустойчивости содержит точку a = 1, q = 0. Диаграмма Айнса-Стретта полностью освобождает от выполнения каких-либо операций по решению уравнения Матье. Достаточно составить это уравнение, т.е. найти значения параметров системы a и q, после чего диаграмма дает ответ на вопрос об устойчивости или неустойчивости системы.

При возрастании частоты возбуждения параметры a и q уменьшаются. Так как отношение этих параметров остается постоянным, то последовательные состояния системы определяются изображающими точками на луче
, проходящем через начало координат.


Содержание раздела