Введение в схемы, автоматы и алгоритмы


             

Леммы о рекурсивных функциях


В этом параграфе мы установим примитивную (частичную) рекурсивность некоторых важных классов функций - таблиц и нумераций, и расширим возможности определения функций с помощью суммирования, произведения, разбора случаев и взаимной рекурсии.

Лемма 8.1. Рекурсивность табличных функций. Пусть всюду определенная функция f(x) на всех аргументах, кроме конечного числа, равна некоторой константе c (такую функцию назовем табличной). Тогда она является примитивно рекурсивной.

Доказательство Пусть для функции f из условия леммы nf= max{x | f(x)

c}. Доказательство проведем индукцией по nf.

При nf=0 функция f является постоянной и поэтому примитивно рекурсивной (пример 8.1).

Предположим что все табличные функции g со значением ng

k примитивно рекурсивны и пусть nf = k +1 и f(0)=a. Определим табличную функцию f'(x) = f(x+1). Ясно, что nf' = k, и по предположению индукции f' примитивно рекурсивна. Легко проверить, что тогда f задается следующей схемой:

и, следовательно, также примитивно рекурсивна.

Покажем замкнутость класса ч.р.ф. (п.р.ф.) относительно операций суммирования и произведения.

Лемма 8.2. Суммирование и произведение. Пусть функция f(x1,…, xn, y) является частично (примитивно) рекурсивной. Тогда и функции Fn+1 и Gn+1, заданные следующими равенствами

является частично (примитивно) рекурсивными.

Доказательство Действительно, эти функции задаются следующими примитивно рекурсивными схемами:

Приведем примеры использования леммы 8.2.

Пример 8.10. max_deg_div(x,y) = максимальная степень x, на которую нацело делится y.

Пусть exp(x,y) - экспоненциальная функция: exp(x,y) = xy. Ее примитивную рекурсивность легко установить, используя функцию умножения (см. задачу 8.1 (а) ). Тогда нетрудно проверить, что искомая функция задается соотношением

и, следовательно, является примитивно рекурсивной.

Пример 8.11. Ограниченная минимизация. Пусть примитивно рекурсивная функция g(x,y) такова, что для каждого x найдется y

x, для которого g(x,y) =0. Положим F(x) = mu y [g(x,y) = 0].

Тогда, по определению, F(x) является частично рекурсивной функцией.

Содержание  Назад  Вперед