Проведем структурный анализ данного механизма. Число подвижных звеньев механизма n=8, числокинематических пар pi=12, из них для плоского механизма одноподвижных p1=10 (вращательных p1в=8, поступательных p1п=2 и двухподвижных p2=2. Число подвижностей механизма на плоскости:
Wпл = 3*8 - (2*10 + 1*2) = 2 = 1 + 1,
полученные две подвижности делятся на основную или заданную W0 = 1 и местную Wм = 1. Основная подвижность определяет основную функцию механизма преобразование входного движения f1 в два функционально взаимосвязанных f8 и S6. Местная обеспечивает выполнение вспомогательной функции: заменяет в высшей паре кулачок - толкатель трение скольжения трением качения. Если рассматривать механизм как пространственный, то во-первых необходимо учесть, что с увеличением подвижности звеньев с трех до шести изменяются и подвижности некоторых кинематических пар. В нашем примере это высшие пары K и P, подвижность которых изменяется с двух до четырех, и низшая пара D, у которой подвижность увеличивается до двух. С учетом сказанного, подвижность пространственного механизма равна:
Wпр = 6*8 - (4*1 + 5*9 + 2*2) = 48 - 53 = -5,
т. е. как пространственный данный механизм не имеет подвижности, так как число связей в нем существенно (на пять) превышает суммарную подвижность всех его звеньев. Однако от рассмотренного ранее плоского варианта пространственный механизм ничем не отличается, то есть он имеет две подвижности основную и местную. Как отмечено, выше связи, не изменяющие подвижности механизма, являются пассивными или избыточными.